Twin boundary profiles with linear-quadratic coupling between order parameters.

نویسندگان

  • Henning Pöttker
  • Ekhard K H Salje
چکیده

A new type of twin boundary was found when two order parameters interact by linear-quadratic coupling QP(2). In this solution, we find that a domain wall consists of two layers in which in one layer both order parameters Q and P are active while in the second layer only Q is active. The adjacent domains are equally asymmetric (Q, P) and (Q, 0) so that one phase could be polar and/or magnetic and contain a ferroelastic strain while the second layer is ferroelastic only without polar or magnetic properties. The two layers represent a stepwise transition between the two domains.We analyze the full phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the order parameter Q becomes activated only in the interfacial region. A common solution contains kinks and breathers whereby the width of the interface can be very wide in agreement with the first order character of the transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems

In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.

متن کامل

About One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions

In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...

متن کامل

Flexoelectricity , incommensurate phases and the Lifshitz

The solutions for the minimizers of the energy density f (q, p) = Aq2 + Bq4 + p2 + gA,B + ( ) β κ − + | | + | | ′ ′ ′ ′ q p p q q p 2 2 describe the flexoelectric effect with a flexoelectric coupling coefficient β. The order parameters q and p can be visualized as strain and polarisation, respectively. The parameter κ denotes the ratio of intrinsic length scales for q and p. We show that the st...

متن کامل

Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...

متن کامل

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 26 34  شماره 

صفحات  -

تاریخ انتشار 2014